

Progress in Water, Sanitation and Hygiene (WASH) Practices and Association with Changes in Diarrhea and Stunting in Children Aged 0-59 Months in Ethiopia (2000-2016)

Photo credit: UNICEF/Ethiopia/2020/NahomeTesfaye

Addis Ababa September 2021

Authors

Meron Girma¹, Alemayehu Hussein¹, Tom Norris³, Tirsit Genye², Masresha Tessema¹, Anne Bossuyt², Mamuye Hadis⁴, Cornelia van Zyl², Aregash Hafebo¹

¹ Ethiopian Public Health Institute/National Information Platform for Nutrition (NIPN)

² International Food policy Research Institute (IFPRI)/NIPN

³ School of Sport, Exercise and Health Sciences, Loughborough University, United Kingdom (IFPRI Collaborator)

⁴ Ethiopian Public Health Institute (EPHI)

This report was prepared by the NIPN in Ethiopia, hosted by EPHI. Technical support to the NIPN is provided by IFPRI. The NIPN is a global initiative of the European Commission. The NIPN in Ethiopia is funded by the European Union (EU) Delegation for Ethiopia, the Foreign, Commonwealth and Development Office and the Bill and Melinda Gates Foundation.

For communication on this report, please address any queries to NIPN Ethiopia at ephi.nipn@gmail.com

Disclaimer: This report was produced by the NIPN in Ethiopia with the financial support of the EU Delegation for Ethiopia. The report has not been peer reviewed and the opinions and contents contained herein are the sole responsibility of the authors and do not reflect the views of the EU, IFPRI nor those of EPHI.

Table of Contents

List of Tables	.1
List of Figures	.1
List of Acronyms	.2
Abstract	.3
1. Introduction	.4
2. Objectives	.5
3. Methods	.6
3.1 Data Source	.6
3.2 Trends in WASH Practices: WASH Indicators	.6
3.3 Relationship Between WASH Practices and Stunting and Diarrhea	.8
3.3.1 Exposures	.8
3.3.2 Outcomes	.8
3.3.3 Covariates	.8
3.4 Statistical Analysis	.8
4. Results1	0
4.1 Progress in Drinking Water Coverage1	0
4.2 Progress in Sanitation Coverage1	0
4.3 Progress in Hygiene Coverage1	.5
4.4 Trends in Inequalities in Basic WASH Standard Coverage	.5
4.5 Trends in Diarrhea and Stunting1	.7
4.6 Relationship Between WASH Practices and Diarrhea and Stunting	.7
4.6.1 Children Aged 0-5 Months1	.7
4.6.2 Children Aged 6-11 Months1	-8
4.6.3 Children Aged 12-23 Months1	.8
4.6.4 Children Aged 24-59 Months1	-8
4.6.5 Children Aged 0-59 Months1	9
5. Conclusion and Recommendations2	20
Summary of the Findings	20
Interpretation of the Findings	20
Strengths and Weaknesses	22
Conclusion	23
References	24
Annex: Additional Tables	28

List of Tables

Table 1. Number of Households and Children Included in the Four Rounds of EDHS Surveys	6
Table 2. WHO/UNICEF JMP WASH Service Standards	7
Table 3. Age-Disaggregated Change in Prevalence of Diarrhea and Stunting	17
Table 4. Water, Sanitation and Child Stunting and Diarrhea in Pooled Regression Models	18
Table A1. Changes in Water Coverage in Ethiopia Between 2000 and 2016: National and Regional Levels	28
Table A2. Changes in Sanitation Coverage in Ethiopia Between 2000 and 2016: National and Regional	29
Levels	
Table A3. Changes in Hygiene Coverage in Ethiopia Between 2000 and 2016: National and Regional Levels	30
Table A4. Description of Variables Used in the Analysis	31
Table A5. Change in Exposures and Covariates Between 2000 and 2016 Among Children Aged 0-6 Months	33
Table A6. Change in Exposures and Covariates Between 2000 and 2016 Among Children Aged 6-11	34
Months	
Table A7. Change in Exposures and Covariates Between 2000 and 2016 Among Children Aged 12-23	35
Months	
Table A8. Change in Exposures and Covariates Between 2000 and 2016 Among Children Aged 24-59	36
Months	
Table A9. Change in Exposures and Covariates Between 2000 and 2016 Among Children Aged 0-59	37
Months	

List of Figures

Figure 1. Changes in water coverage in Ethiopia between 2000 and 2016: national and regional level Figure 2. Changes in sanitation coverage in Ethiopia between 2000 and 2016: national and regional level Figure 3. Changes in hygiene coverage in Ethiopia between 2011 and 2016: national and regional level Figure 4. Change over time in basic water, basic sanitation and basic hygiene coverage by wealth and residence	8 9 10 12
Figure 5 Estimated contribution of the decline in surface water use and the practice of open defecation between 2000-2016 to the decline in diarrhea observed over the same period	15
Figure 6. Estimated contribution of the decline in surface water use and the practice of open defecation between 2000-2016 to the decline in stunting observed over the same period	15
Figure A1. Flow Diagram Showing Criteria Used to Include Children in Regression Analysis	29

List of Acronyms

DALY	Disability-Adjusted Life Years
EDHS	Ethiopian Demographic and Health Survey
JMP	Joint Monitoring Program
HAZ	Height-for-age z-score
LAZ	Length-for-age z-score
LMIC	Low- and Middle-Income Countries
NNP II	National Nutrition Program II
SD	Standard Deviation
SDG	Sustainable Development Goals
SNNPR	Southern Nations Nationalities and Peoples Region
UNICEF	United Nations Children's Fund
WASH	Water, Sanitation and Hygiene
WHO	World Health Organization

Abstract

Despite progress in the past decade, inadequate safe water supply and poor sanitation and hygiene continue to be important risk factors for diarrhea and stunting globally. We used data from the four rounds of the Ethiopian Demographic and Health Survey (EDHS) to investigate the progress made in Water, Sanitation and Hygiene (WASH) practices between 2000-2016. We used the new World Health Organization (WHO)/UNICEF Joint Monitoring Program (JMP) service standards to assess progress in WASH coverage. We performed an age-disaggregated pooled linear probability regression analysis to explore the relationship between WASH practices and diarrhea and stunting. This was followed by a decomposition analysis to determine whether any changes in WASH practices have contributed to the changing prevalence of diarrhea and stunting in children under five years of age. We observed a significant increase in the coverage of safe drinking water and adequate sanitation facilities over the period. At the national level, the use of a basic water source increased from 18% in 2000 to 50% in 2016. Open defecation declined from 82% to 32% over the same period. However, in 2016 only 6% of households had access to a basic sanitation facility, and 40% of households had no handwashing facilities. In children aged 0-5 months, surface water use was associated with an increased probability of diarrhea. In children aged 0-5 months, surface water use was associated with an increased probability of diarrhea. The reduction of surface water use between 2000-2016 explained 6% of the decline in diarrhea observed among children aged 0-5 months. Open defecation was significantly associated with an increased probability of diarrhea among children aged 0-5 months and 24-59 months and an increased probability of stunting among children aged 6-11, 12-23, and 24-59 months. In children aged 6-59 months, 7-9 % of the reduction in stunting between 2000 and 2016 was attributable to the reduction in open defecation over this period. Despite progress, improvements are still needed to increase the WASH standards and coverage in Ethiopia. Our findings showed that improvements in water and sanitation only modestly explained reductions in diarrhea and stunting.

1. Introduction

Inadequate safe water supply and poor sanitation and hygiene continue to be leading environmental causes of disability-adjusted life years (DALYs)¹ and important risk factors for diarrheal mortality globally². Diarrhea is one the most frequent infections during childhood and is the result of a gastro-intestinal infection, spread through contaminated food or drinking water, or from person to person as a result of poor WASH practices³. In 2017, it was estimated that diarrhea accounts for approximately 8% of all deaths among children under five years worldwide⁴, with a much higher burden of disease for those living in South Asia and sub-Sahara Africa⁵. In Ethiopia, diarrheal disease remains a major public health concern. In 2016, estimates revealed a prevalence of diarrheal disease of 12% and that 13% of child deaths were attributable to diarrhea⁶. A more recent systematic review of diarrheal prevalence studies (14 of the 31 studies published from 2016 onwards) in Ethiopia has however, revealed a prevalence of diarrheal disease of 22%⁷, suggesting that the proportion of under-five mortality attributable to diarrhea may have increased.

The high burden of infectious diseases such as diarrhea is also a major contributor to the high rates of stunted growth observed in low-income settings⁸. Globally stunting (length/height-for-age z-score[LAZ/HAZ]< -2 standard deviations [SD]) is the most prevalent form of chronic undernutrition, with current estimates revealing that more than one in five children under five years of age worldwide are stunted, but with much higher rates in low-and middle-income countries (LMICs)⁹. Ethiopia, in particular, remains a country with a high burden of childhood undernutrition, with recent estimates revealing a stunting prevalence of 37%¹⁰. This is despite notable declines in the prevalence of stunting between 2000 (58%)¹¹ and 2016 (38%)⁶. The short-and long-term outcomes associated with stunting include higher mortality, lower educational attainment, and reduced adult economic output¹².

A positive reinforcement loop exists between childhood undernutrition and diarrheal disease^{12,13}. Undernutrition is related to immunosuppression and an increased predisposition to infections such as diarrhea. In turn, diarrhea leads to undernutrition via reduced appetite, malabsorption and ultimately a reduced energy intake¹⁴⁻¹⁶. Indeed, findings from observational studies suggest that repeated diarrhea incidence in the first two years of life increases the risk of being stunted at two years of age ¹⁷⁻¹⁹. Given the interrelationship between these two outcomes, identifying factors and appropriate interventions targeting stunting and/or diarrhea could potentially confer mutual benefits. The WHO conceptual framework on childhood stunting²⁰ postulates a multisectoral approach in order to achieve maximum benefit in tackling this form of malnutrition. The framework presents the proximal causes (poor quality diet and infections such

as diarrhea) and the community and societal factors that contribute to these proximal causes including poor WASH practices.

The positive effect of improved WASH practices and a reduced diarrhea incidence in young children, especially in those residing in LMIC, is well known and has been reported in several meta-analyses²¹⁻²³. These findings have led to the hypothesis that, via the positive effect on diarrhea risk, WASH may confer benefits to linear growth. Observational studies have shown support for an association between WASH practices and child height²⁴⁻²⁸ and a meta-analysis of five WASH trials revealed a small but significant impact on HAZ at five years.²⁹ More recently however, the publication of the two large WASH Benefits trials^{30,31} and the SHINE trial³² have cast doubt on this association, with all three trials observing no effect on linear growth (LAZ) at 18-24 months of age, with the authors concluding that elementary household level WASH interventions are unlikely to improve child growth.³³

While the evidence regarding the efficacy of WASH interventions on reducing childhood stunting is equivocal, the benefits of promoting improved WASH practices remains important for child nutrition (e.g., wasting and micronutrient deficiency), health and development. The Sustainable Development Goals (SDGs) recognize WASH as central to development with SDG 6 calling for universal access to safe and adequate water, sanitation, and hygiene for all by 2030³⁴. Consequently, promoting appropriate WASH practices will help achieve sustainable development in general³⁵ and WASH coverage targets included in Ethiopia's Growth and Transformation Plan II³⁶ and the Ethiopian National Food and Nutrition Policy³⁷ in particular. Furthermore, the recent national level estimates of diarrhea (12%) and stunting (38%) reported in the EDHS 2016⁶, highlight the fact that undernutrition and diarrhea still represent a significant burden for children under five years and that identification of risk factors to reduce this burden is warranted.

2. Objectives

Considering the importance of WASH to health and overall wellbeing and in alignment with the priorities within the national landscape, the study aimed to:

- 1. investigate the progress made in WASH practices between 2000-2016, and
- 2. determine whether any changes in WASH practices have contributed to the changing prevalence of diarrhea and stunting in children under five years of age in Ethiopia.

3. Methods

3.1 Data Source

This report uses data from the four rounds (2000, 2005, 2011, and 2016) of the EDHS ^{6,11,38,39}. These surveys are standardized and collect nationally and regionally representative crosssectional data for households, children under five years of age, women of reproductive age, and men. The EDHS uses a stratified two-stage cluster sampling method to select participants. In the first stage, each region is stratified as urban or rural and within these strata, enumeration areas are selected using probability proportional to size sampling. Enumeration areas are geographic areas that cover an average of 181 households. In the second stage, households are randomly selected from each enumeration area. For this analysis, we used the household and child datasets of the EDHS. The household dataset provides information on household characteristics including the source of water, type of toilet facility, housing type, and asset ownership. The child dataset, for children aged 0-59 months, contains information on child health (diarrhea, acute respiratory tract infections, and vaccination history) and nutrition (stunting, wasting, underweight, and infant and young child feeding). The child dataset also provides information on maternal and paternal education attainment, occupation, employment status as well as maternal anthropometric data. Table 1 presents the number of households and children included in each round of the EDHS. We used the household dataset to determine trends in WASH practices and the child dataset to test associations between WASH practices and diarrhea and stunting.

	2000	2005	2011	2016
Households	14,642	13,721	16,702	16,650
Children 0-59 months	10,449	4,586	10,282	10,552

Table 1. Number of Households and Children (0-59 months) Included in Each Round of the
EDHS

3.2 Trends in WASH Practices: WASH Indicators

We used the new WHO/UNICEF JMP WASH service standards⁴⁰ to describe WASH practices in Ethiopia. These new WASH service standards (described in Table 2) build on the widely used improved/unimproved facility type classification and introduce additional indicators to reflect higher standards⁴⁰. In Ethiopia, data were not available to construct 'safely managed water' and 'sanitation standards'. Consequently, the highest service standards used in this analysis are 'basic drinking water facilities' and 'basic sanitation facilities'. A 'basic drinking water source'

refers to 'drinking water from an improved source, with collection time, not more than 30 minutes for a round trip'. A 'basic sanitation facility' is 'an improved toilet facility that is not shared with other households'. The highest hygiene service standard is 'basic' which requires 'the availability of a handwashing facility with soap and water on the premises'.

Table 2. WHO/UNICEF JMP WASH Standards

Drinking Water Sta	ndards						
Safely Managed	Drinking water from an improved water source that is located on						
	premise, available when needed, and free from fecal and priority						
	chemical contamination.						
Basic	Drinking water from an improved source, provided collection time is not						
	more than 30 minutes for a round trip, including queuing.						
Limited	Drinking water from an improved source which collection time exceeds						
	30 minutes for a round trip, including queuing.						
Unimproved	Drinking water from an unprotected dug well or unprotected spring						
Surface Water	Drinking water directly from a river, dam lake, pond, stream, canal or						
	irrigation canal.						

Improved water sources include: piped water, boreholes or tube wells, protected dug wells, protected spring, rainwater, and packaged or delivered.

Sanitation Standar	ds
Safely Managed	Use of improved facilities that are not shared with other households and
	where excreta are safely disposed of in situ or transported and treated
	off site.
Basic	Use of improved facilities that are not shared with other households.
Limited	Use of improved facilities shared between two or more households.
Unimproved	Use of pit latrines without slab or platform, hanging latrines or bucket
	latrines.
Open Defecation	Disposal of human feces in fields, forests, bushes, open bodies of water,
	other open spaces or with solid waste.

Improved facilities include: flush/pour flush piped to sewer system, septic tanks or pit latrines, ventilated improved pit latrines, composting toilets or pit latrines with slab.

Hygiene Standards	
Basic	Availability of a handwashing facility on premise with soap and water.
Limited	Availability of a handwashing facility on premise without soap and water.
No Facility	No handwashing facility on premise.

Handwashing facilities may be fixed or mobile and include a sink with tap water, buckets with taps, tippy-taps, and jugs of basins designated for handwashing. Soap includes bar soap, liquid soap, powder detergent and soapy water but does not include ash, soil, sand, or other handwashing agents.

3.3 Relationship Between WASH Practices and Stunting and Diarrhea

3.3.1 Exposures

As data pertaining to hygiene practices were only available in 2011 and 2016, the analysis to assess the association between WASH practices with stunting and diarrhea focused on drinking water and sanitation practices only. Specifically, the exposures of interest were the use of surface water as a drinking source and the practice of open defecation.

3.3.2 Outcomes

The outcomes of our regression analysis were diarrhea and stunting. Diarrhea was defined as the percentage of children with diarrhea (three or more loose stools per day) at any time in the two weeks preceding the survey. Stunting was defined as HAZ/LAZ below -2 SD of the median based on the WHO 2006 Child Growth Standards⁴¹.

3.3.3 Covariates

The relationships between exposures and outcomes were adjusted for covariates which were selected based on the Lancet framework for action (Black et.al)⁴² or previously reported associations with the outcome variables^{7,8,13,43-49}. These included maternal and paternal education, household wealth, maternal employment, child age, child sex, residence, region and survey round (see Table A4 in the annex for a description of these variables).

3.4 Statistical Analysis

3.4.1 Trends in WASH Indicators and Diarrhea and Stunting

Trends in WASH practices, diarrhea and stunting were explored using data from the four rounds of the EDHS. To account for the cluster sampling used in the EDHS, sampling weights were applied to estimate the prevalence of WASH practices, stunting and diarrhea across survey rounds. To explore changes in WASH practices between 2000-2016, stacked area plots were produced at the national and regional level. Additionally, equity plots documenting the temporal changes in WASH practices by wealth quintile and place of residence (urban versus rural) were produced.

3.4.2 Relationship Between WASH Practices and Stunting and Diarrhea

To account for the timing of growth faltering in childhood ¹¹, we made an *a priori* decision to investigate the relationship between WASH practices and stunting and diarrhea using an age-

disaggregated approach. Accordingly, stratified analyses were performed in the following age ranges: 0-5 months, 6-11 months, 12-23 months, and 24-59 months. In addition, we made an a priori decision to include in the analysis, for households with more than one child below 59 months, only the youngest child with anthropometric data. Within the age groups listed above, we performed a regression decomposition analysis, which seeks to determine the contribution made by changes in the mean levels of exposures over time to changes in outcomes. Specifically, the decomposition analysis sought to reveal whether changes in surface water usage and open defecation practices identified in the previous step, contributed to observed reductions in diarrhea and stunting between 2000 and 2016. As has been done in other decomposition analyses, we initially examined the relationship between diarrhea and stunting with the exposures by pooling data from all rounds of the EDHS and performing a linear probability regression analysis (adjusted for the covariates listed above and with robust standard errors to account for clustering). A key assumption underpinning the use of a decomposition analysis which is based on a pooled regression model, is that coefficients are time invariant (i.e., the magnitude and direction of coefficients are stable over time). In order to test this assumption, we performed a series of Chow tests, which test whether coefficients differ significantly over time. We did not find support for the coefficients being time-varying and we therefore followed the approach by Headey^{44,45,47} and performed a simple decomposition analysis for exposures that were associated with outcomes in the regression analysis at the 10% level of significance. The decomposition equation takes the form of

$$\Delta \overline{N}_{i,t} = \beta (\overline{X}_{t=k} - \overline{X}_{t=1})$$

where t=1 represents the EDHS 2000 sweep, t=k is the 2016 EDHS and β and \overline{X} represent the regression coefficient and sample mean, respectively, for a given variable. The decomposition then entails multiplying observed changes in the means of each variable over time by its regression coefficient. Doing so gives the predicted change in the probability of stunting or diarrhea from each change in a selected variable and thus shows the estimated contributions of each variable to changes in stunting and diarrhea. For example, let's assume that the practice of open defecation decreased by 20% between 2000 and 2016 and that the regression coefficient, in a model with diarrhea as the outcome, comparing the practice of open defecation versus no open defecation is 0.05. If we multiply these two numbers, we will get 1%, indicating that the changes in the practice of open defecation accounts for 1% decline in diarrhea. If diarrhea declined by 5% over the same period, changes in the prevalence of basic toilet facilities would therefore represent a 20% contribution to the reduction in diarrhea prevalence. Data management and statistical analysis were conducted in Stata Version 14.0.

4. Results

Data from 61,715 households across the four rounds of the EDHS (2000-2016) were used to describe trends in WASH practices. A total of 6,373, 2,833, 6,832 and 6,323 children aged 0-59 months (n= 22,361) from the 2000 EDHS, 2005 EDHS, 2011 EDHS, and 2016 EDHS, respectively were included in the regression analysis. After exclusion of children with missing values for outcomes, exposures and covariates, 20,509 children were included in the diarrhea model and 20,408 were included in the stunting model. Figure A1 in the annex shows criteria used to include children in the regression analysis. The mean (SD) child age was 22(15) months, and 51% of the children were male. The mean (SD) maternal age was 29(7) years.

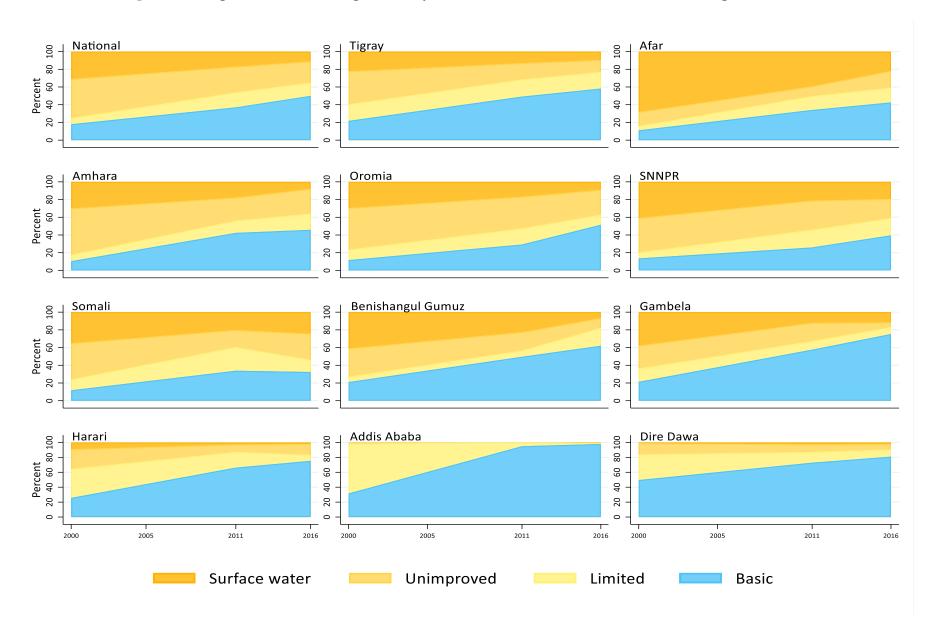

4.1 Progress in Drinking Water Coverage

Figure 1 below and Table A1 in the annex show the progress in water coverage between 2000 and 2016. In 2016, half (50%) of households in Ethiopia used a basic water source (an improved source that has a collection time of no more than 30 minutes for a round trip). This figure represents an increase from 2000, when only 18% of households used a basic water source. Despite this progress in 2016, 15% of households spent more than 30 minutes collecting water (limited drinking water ladder), 24% used an unimproved water source, and 11% used surface water. While improvements in water service standards were seen across all regions, regional differences in coverage were observed. For example, in 2016, the use of a basic water source was much larger than the national average in Addis Ababa (98%), Dire Dawa (81%), Harari (75%), and Gambela (75%). In contrast, in Somali, only 32% of households used a basic water source, and 22% used surface water. Surface water use was also high in Afar (22%).

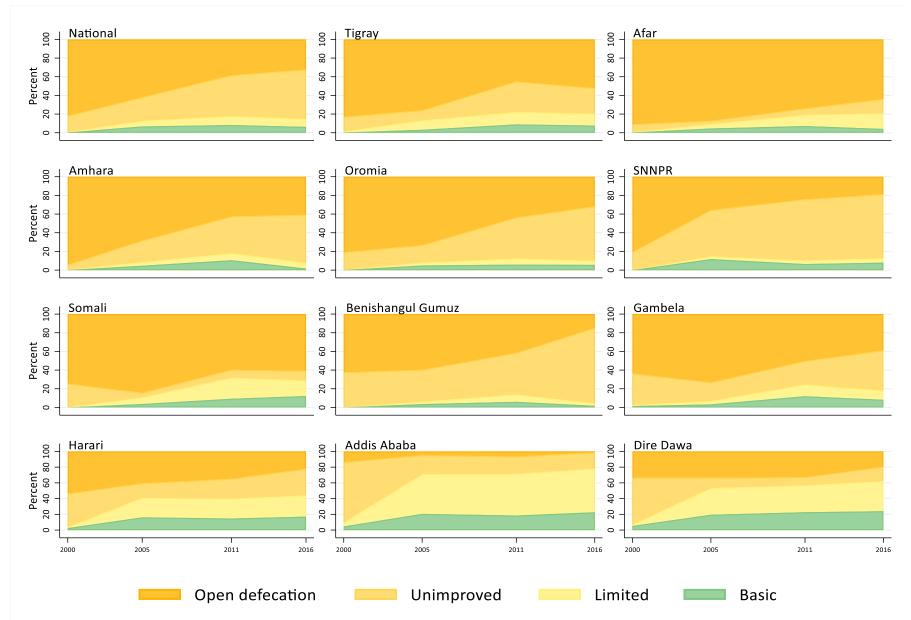
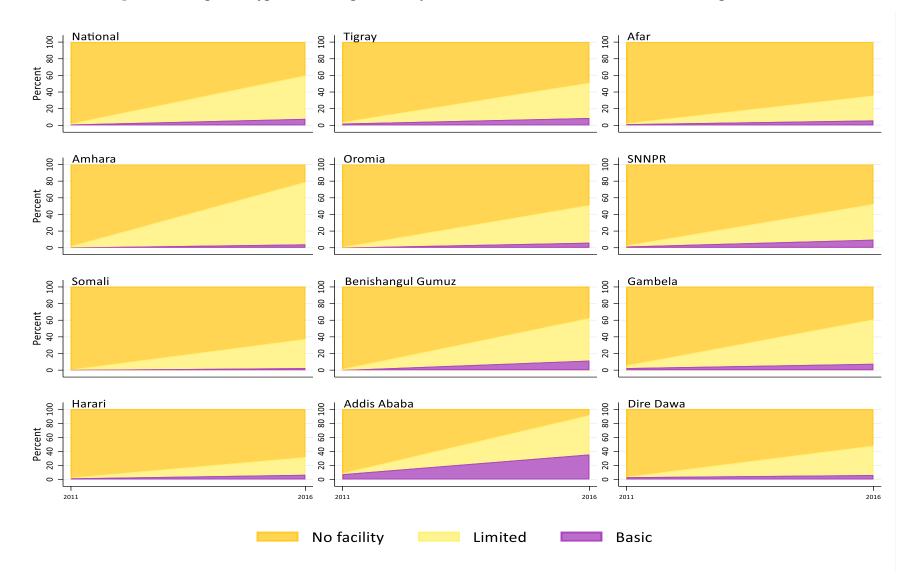

4.2 Progress in Sanitation Coverage

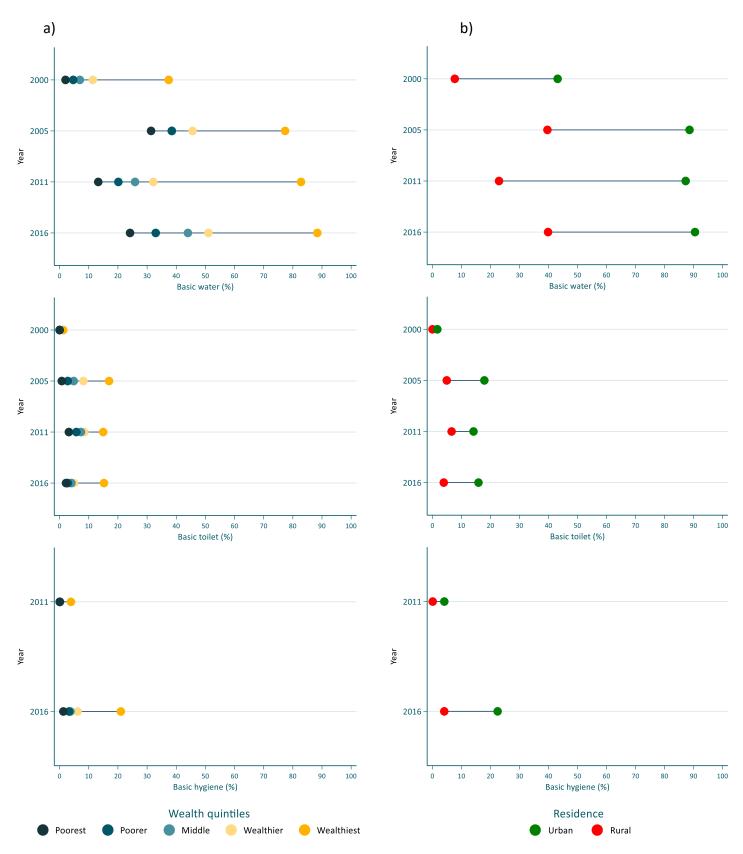
Figure 2 below and Table A2 in the annex show national and regional trends in sanitation. While some progress has been made since 2000, large gaps remain in coverage of sanitation facilities. In 2016, only 6% of Ethiopian households used a basic sanitation facility, compared to no households in 2000. Additionally, 9% of households used an improved toilet facility that is shared with two or more households (limited sanitation ladder). Open defecation showed a significant decline between 2000 and 2016. In 2000, 82% of households practiced open defecation compared to 32% in 2016. Similar to water coverage, regional differences in the type of sanitation facilities used were observed. The largest percentages of households that used basic and limited sanitation facilities were in Addis Ababa (basic: 23%, limited: 56%) and Dire Dawa (basic:24%, limited: 38%), both city administrations. The percentage of households that still practiced open defecation was highest in Afar (64%), Somali (61%), and Tigray (52%). By

contrast, in Southern Nations Nationalities and Peoples Region (SNNPR), open defecation declined from 81% in 2000 to 19% in 2016.

Figure 1. Changes in Water Coverage in Ethiopia Between 2000 and 2016: National and Regional Levels

Figure 2. Changes in Sanitation Coverage in Ethiopia Between 2000 and 2016: National and Regional Levels




Figure 3. Changes in Hygiene Coverage in Ethiopia Between 2011 and 2016: National and Regional Levels

4.3 Progress in Hygiene Coverage

The use of basic handwashing facilities is low in Ethiopia. In 2016, only 8% of households had a handwashing facility with soap and water available on the premises (Figure 3 above and Table A3 in the annex). Additionally, 52% of the households used a limited hand washing facility, and 40% had no handwashing facility on the premises. In some regions, close to 70% of households did not have any handwashing facilities (Harari 68%, Somalia 63%, Dire Dawa 52 %, Tigray 49 %, Afar 64%, Oromia 49%). In all regions except Addis Ababa and Benishangul Gumuz, less than 10% of the households had a handwashing facility with soap and water. Addis Ababa had the highest proportion of households with basic hygiene facilities, at 36%. Percentages used to construct Figures 1-3 are included in Tables A1-A3 in the annex.

4.4 Trends in Inequalities in Basic WASH Standard Coverage

Figure 4 shows trends in coverage of basic water, basic sanitation, and basic hygiene facilities by wealth and residence. In general, the use of a basic water facility increased over time across all wealth quintiles. However, the change was much greater in the wealthiest quintile, increasing from less than 40% of households in 2000 to just under 90% in 2016. As such, the gap between the poorest and the richest households (represented by the width of the bars shown in Figure 4) increased between 2000-2016. When disaggregated by place of residence, the proportion of households using a basic water facility was consistently greater in urban areas and this difference increased between 2000-2016. In both urban and rural settings, the proportion of households using a basic water facility increased markedly between 2000-2005, with little change observed thereafter. Access to basic sanitary facilities was consistently higher among the wealthiest households compared to the poorest households, though these differences were small compared to differences seen for access to basic water facilities. As was observed for basic water facilities, the greatest increases in the proportion of households, across the quintiles, was observed between 2000-2005, with a plateauing thereafter. As expected, wealthier households and households in urban areas had more access to basic hygiene facilities compared to poorer households and households located in rural areas, respectively and this difference increased between 2011-2016.

Figure 4. Change Over Time in Basic Water, Basic Sanitation and Basic Hygiene Coverage by Wealth and Residence

4.5 Trends in Diarrhea and Stunting

Table 3 presents age-disaggregated changes in the prevalence of diarrhea and stunting between 2000 and 2016. Overall, the prevalence of both diarrhea and stunting declined during this period. Across all EDHS rounds, the prevalence of diarrhea was lowest in the youngest infants (0-5 months). In all children aged 0-59 months, stunting declined by 22% between 2000 (55%) and 2016 (33%). The prevalence of stunting was lowest in infants aged 0-5 months and increased with age; with the highest prevalence in children aged 24-59 months.

			Diarrhe	ea ¹	Stunting ²					
Age	2000	2005	2011	2016	Change	2000	2005	2011	2016	Change
					(2016-2000)					(2016-2000)
0-5 months	15	17	11	6	-9	21	17	13	13	-8
6-11 months	39	31	25	23	-16	35	31	23	17	-18
12-23 months	38	30	23	19	-19	61	54	45	39	-22
24-59 months	23	17	13	12	-11	70	62	57	49	-21
0-59 months	29	22	17	15	-14	55	48	42	33	-22

Table 3. Age-Disaggregated Change in the Prevalence of Diarrhea and Stunting (%)

¹Percentage of children with diarrhea (three or more loose stools per day) at any time in the two weeks preceding the survey. ²Percentage of children with HAZ/LAZ below -2 SD of the median based on the WHO 2006 Child Growth Standards.

4.6 Relationship Between WASH Practices and Diarrhea and Stunting

Table 4 presents estimates for the age-disaggregated association between WASH practices, diarrhea, and stunting, obtained from the pooled regression models. We also present estimates from the model with all children aged 0-59 months. Trends in the modifiable predictors included in our decomposition analyses are shown in Tables A5 to A9 in the annex.

4.6.1 Children Aged 0-5 Months

Among children aged 0-5 months, the use of surface water was associated with a 4% (95% CI: 1%, 7%, p=0.018) increase in the probability of diarrhea (Table 4). Similarly, children who lived in households that practice open defecation had a 3% (95% CI: 0, 6%, p=0.087) higher probability of diarrhea. In contrast, neither household surface water use nor open defecation was associated with the probability of stunting. Decomposition analysis showed that the reduction of surface water use and open defecation between 2000 and 2016 respectively explained 6% and 7% of the decline in diarrhea in this age group (Figure 5).

		C	_		
	Ν	Surface Water	р	Open Defecation	р
		Beta [95% CI]		Beta [95% CI]	
Diarrhea					
0-5 months	2996	0.04 [0.01,0.07]	0.018	0.03 [-0.00,0.06]	0.087
6-11 months	3054	-0.01 [- 0.05,0.03]	0.707	-0.01 [-0.05,0.03]	0.700
12-23 months	5562	0 [-0.03,0.03]	0.857	0 [-0.04,0.03]	0.869
24-59 months	8897	-0.01 [- 0.03,0.01]	0.220	0.03 [0.01,0.05]	0.012
0-59 months	20509	0 [-0.02,0.01]	0.816	0.02 [-0.00,0.03]	0.063
Stunting					
0-5 months	2988	0.02 [- 0.01,0.05]	0.206	0.01 [-0.02,0.04]	0.489
6-11 months	3045	-0.01 [- 0.04,0.03]	0.631	0.04 [-0.00,0.07]	0.057
12-23 months	5534	0.01 [- 0.03,0.04]	0.709	0.03 [-0.00,0.07]	0.056
24-59 months	8841	0.01 [- 0.02,0.03]	0.663	0.03 [-0.00,0.06]	0.064
0-59 months	20408	0 [-0.01,0.02]	0.729	0.03 [0.01,0.05]	< 0.001

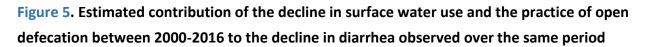
Table 4. Water, Sanitation and Child Stunting and Diarrhea in Pooled Regression Models(n=20,141)¹

¹ Beta coefficients (95% CI) are estimated using linear probability regression model with a robust variance estimator. Models were adjusted for maternal education, paternal education, maternal employment, wealth, region, residence, age, sex and survey round.

4.6.2 Children Aged 6-11 Months

In children aged 6-11 months, use of surface water and open defecation were not significantly associated with diarrhea. However, use of open defecation was associated with a 4% (95% CI: 0%, 7%, p=0.057) increase in the probability of stunting and the reduction of open defecation between 2000-2016 explained 9% of the total decline in stunting between 2000 and 2016 (Figure 6).

4.6.3 Children Aged 12-23 Months


Similarly, in children aged 12-23 months, both surface water use and open defecation were not associated with the probability of diarrhea. Open defecation was associated with an increase in the probability of stunting (β : 3%, 95% CI: -0%, 7%, p=0.056). The decline in open defecation between 2000-2016 explained 7% of the overall decline in stunting (Figure 6).

4.6.4 Children Aged 24-59 Months

In children aged 24-59 months, surface water use was not associated with the probability of diarrhea or stunting. However, the practice of open defecation was associated with a 3% (95% CI: 1%, 5%, p=0.012) increase in the probability of diarrhea and stunting (β : 3%, 95% CI:0%, 6%, p=0.064). The decline in open defecation between 2000-2016 explained 8% and 7% of the decline seen in diarrhea and stunting respectively.

4.6.5 Children Aged 0-59 Months

In the model that included all children (aged 0-59 months), surface water use was not associated with diarrhea or stunting at the 10% level of significance. However, open defecation was associated with a decreased probability of stunting (β : 3%, 95% CI:1%, 1%, p<0.001). A decline in open defecation explained 7% of the decline in stunting (between 2000 and 2016) among children aged 0-59 months.

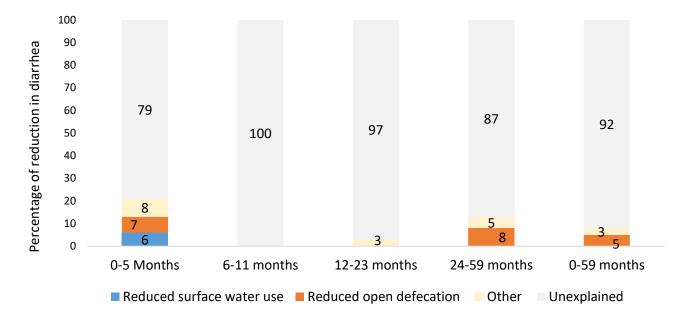
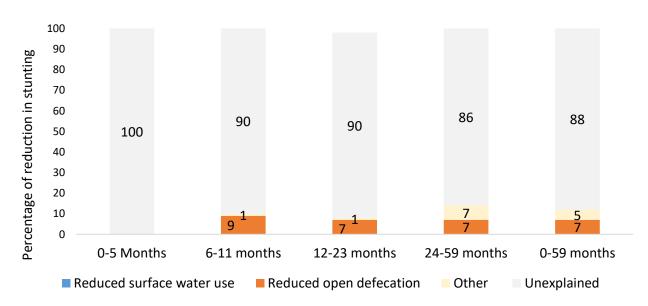



Figure 6. Estimated contribution of the decline in surface water use and the practice of open defecation between 2000-2016 to the decline in stunting observed over the same period

5. Conclusion and Recommendations

Summary of the Findings

This report utilized data from multiple rounds of the EDHS to derive trends in WASH practices between 2000-2016 and relate these trends to changes in the prevalence of stunting and diarrhea among Ethiopian children aged 0-59 months. Between 2000-2016, the prevalence of stunting in children under five years of age (included in our analysis) decreased from 55% to 33%, with the biggest reduction in prevalence observed in children aged 12-23 months (61% in 2000 to 39% in 2016; a 22% change). Reductions in the prevalence of diarrhea were also observed, declining from 29% to 15% in children under five years of age, again with the largest reduction observed in children aged 12-23 months (38% in 2000 to 19% in 2016; a 19% change). We observed a significant increase in the coverage of safe and adequate drinking water and sanitation facilities over the period. To illustrate, at the national level, the use of a basic water source increased from 18% to 50% between 2000 and 2016, while open defecation declined from 82% to 32%. These improvements in WASH practices contributed to some of the observed reductions in the probability of experiencing diarrhea and stunting. The reduction of surface water use over this period explained 6% of the decline in diarrhea observed among children aged 0-5 months. In children aged 0-59 months, 7% of the reduction in stunting between 2000 and 2016 was attributable to the reduction in open defecation over this period. Despite these positive results, the finding that only 6% of households had access to basic sanitation facilities and 40% of households had no handwashing facilities at all, means that more efforts are still required to improve WASH coverage in Ethiopia.

Interpretation of the Findings

We present original findings regarding the change in age-disaggregated diarrhea prevalence in children under five years of age. A recent systematic review of 31 studies published between 2003-2017 estimated the prevalence of diarrhea in children under five years at 22%⁷. Our analysis, by estimating the prevalence in age-disaggregated groups, provides greater insight into the burden of, and risk factors associated with diarrhea in early childhood. We observed the lowest prevalence of diarrhea in those aged 0-5 months. Thereafter, we reveal a pattern of an increasing burden of diarrhea around the time of the introduction of complementary feeding at six months and a subsequent reduction after 12 months. Taken together, these findings highlight the benefits of exclusive breastfeeding and the increased risk of diarrhea associated with the transition to complementary feeding, likely a consequence of the consumption of contaminated food and water as a result of poor WASH conditions. This finding of an increasing burden of diarrhea at this age has been reported in Ethiopia ^{6,11,50} and in other LMIC settings⁵¹. In light of the above, we observed an unexpected association with the probability of diarrhea and the type of water source (surface water)

among children aged 0-5 months. This finding is surprising since we would expect the use of surface water to increase the risk of diarrhea once complementary feeding starts after 6 months. The lack of association between diarrhea and surface water use in older children seen in this analysis supports findings from recent WASH trials conducted in Bangladesh⁵², Zimbabwe,³² and Kenya³¹ which observed little effect of water treatment interventions on diarrhea incidence in children. In terms of sanitation practices, we observed that 7% and 8% of the estimated decline in diarrhea among children aged 0-5 months and 24-59 months respectively, was attributed to the reduction in open defecation. This observed stronger association between sanitation and diarrheal incidence compared to water usage has also been reported in an analysis of data from 217 Demographic and Health Surveys⁵³.

Our finding of an overall reduction in the stunting prevalence in children under five years of age in Ethiopia has been reported elsewhere^{50,54,55}. However, the age-disaggregated analysis has enabled us to also identify a changing dynamic of age-related stunting prevalence over time. For example, in 2000, the prevalence of stunting increased immediately after birth (0-5 months) and continued to increase thereafter. In 2016 however, in addition to numbers being lower overall, the time at which the stunting prevalence increased rapidly appears to be later than in 2000, with little change in stunting prevalence in infants aged 0-5 months (13%) and 6-11 months (17%), followed by a rapid rise between 12-23 months (39%). This delay in growth faltering may be attributable to improved breastfeeding practices in the first six months and improved complementary feeding practices at six to 12 months which may have reduced the exposure to infections as a result of poor WASH conditions.

In our analysis we did not find an association between surface water use and stunting. However, open defecation was associated with an increased probability of stunting across the age groups. A lower risk of stunting with improved sanitation but not improved water has been reported for Ethiopian children elsewhere⁴⁸. The mixed findings between WASH practices and stunting observed in our study are mirrored in the mixed evidence reported in the literature. Whilst observational studies have reported positive associations between WASH practices and linear growth in childhood²⁴⁻²⁷, results from three recent randomized control trials observed no effect of WASH interventions on LAZ-scores at 18-24 months of age³⁰⁻³². As mentioned earlier, large improvements have been made in sanitation coverage in Ethiopia (Figure 2), with a reduction in the practice of open defecation from 82% in 2000, to 32% in 2016. Our findings showed that this reduction contributed to 9% and 7% of the decline in stunting seen among children aged 6 to 11 months, and 12 to 59 months, respectively. Since one proposed pathway between poor WASH practices and stunting is via increase in the incidence of diarrhea, our findings of increased probability of diarrhea and stunting with open defecation are expected.

Despite significant improvements in water and sanitation coverage, our study revealed that these were only associated with modest reductions in diarrhea and stunting in Ethiopian children age 0-59 months. Results from other decomposition analyses have also reported only modest benefits^{44,45}. Furthermore, other studies such as the Malnutrition and the Consequences for Child Health and Development (MAL-ED) birth cohort⁵⁶ and WASH Benefit and SHINE trials ³³ have found little to no effects of improved WASH and environmental enteric dysfunction and on stunting and diarrhea. A possible reason for the lack of relationship is that neighborhood WASH practices are more important than household practices for the reduction of environmental fecal contamination⁵⁷. However, in a supplementary analysis replacing household WASH practices with community practices, this lack of association persisted (data not shown). In light of the modest results of improvements in WASH on diarrhea and stunting, there have been calls for research to identify interventions, labeled 'Transformative WASH', that radically reduce fecal contamination in the household environment in LMIC³³. Proposed interventions may include: high community coverage of improved sanitation facilities⁵⁸, complete separation of animal feces from people's living environments^{59,60}, continuous and convenient access to uncontaminated water⁶¹ and reductions in fecal contamination on surfaces where young children crawl and play⁶². Given that in 2016, 40% of households had no hygiene facilities, 53% rely on unimproved sanitation facilities, and about 35% of households rely on unimproved water sources or surface water, much more work is needed to increase coverage of even basic WASH services across Ethiopia.

Strengths and Weaknesses

We have utilized nationally representative data to identify the contributions made by WASH practices to reductions observed in diarrhea and stunting. We constructed age-disaggregated regression models which have several benefits. Firstly, such an approach has the benefit of being able to identify differential contributions made by variables in specific age periods and thus periods in which intervening on a particular variable may be more advantageous. For example, infants under two years represent an age group of particular interest, as most growth faltering takes places in the first 1000 days of life. Secondly, because age-disaggregated models respect the changing age dynamics of growth faltering observed across childhood⁶³, they are less likely to underestimate the effects of any factor on stunting. In terms of limitations, the EDHS relies predominantly on self- or proxy report, which is therefore subject to recall bias and which may affect older children to a greater extent than younger ones. A reliance on recall may have also led to the underestimation of diarrhea prevalence, if for example, respondents omit to mention episodes of diarrhea that did not result in the utilization of medical care or medicines.

Conclusion

In conclusion, the current analysis has highlighted the progress made in WASH practices between 2000-2016 in Ethiopia and their contribution to the reduction in diarrhea and stunting in children under five years of age. While progress has been made, improvements are still needed to increase the WASH standards and to address pro-wealthy and pro-urban inequalities in WASH coverage. Our findings showed that improvements in water and sanitation only modestly explained reductions in diarrhea and stunting. More research is needed to identify other unexplored drivers of diarrhea and stunting in Ethiopia.

References

- 1. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2017;392(10).
- 2. GBD 2013 Risk Factors Collaborators, Forouzanfar MH, Alexander Lea. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015;386(10010):2287-2323.
- 3. World Health Organization. Diarrhoeal disease. 2020, cited 26 Jun 2020.
- 4. UNICEF. UNCsF. 2020 Jun 26. Diarrhea UNICEF DATA < https://data.unicef.org/topic/childhealth/diarrhoeal-disease/>. Accessed 2020 Jun 26.
- 5. Naghavi M, Abajobir AA, Abbafati C, Abbas KM, Abd-Allah F, Abera SF, al. e. Global, regional, and national age-sex specifc mortality for 264 causes of death, 1980-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017;390:1151–1210.
- 6. Central Statistical Agency (CSA) [Ethiopia] and ICF. Ethiopia Demographic and Health Survey 2016. Addis Ababa, Ethipia and Rockville, USA: CSA and ICF; 2016.
- 7. Alebel A, Tesema C, Temesgen B, Gebrie A, Petrucka P, Kibret GD. Prevalence and determinants of diarrhea among under-five children in Ethiopia: A systematic review and meta-analysis. PLoS One 2018;13(6): e0199684.
- Danaei G, Andrews KG, Sudfeld CR, Fink G, McCoy DC, Peet E, Sania A, Smith Fawzi MC, Ezzati M, Fawzi WW. Risk Factors for Childhood Stunting in 137 Developing Countries: A Comparative Risk Assessment Analysis at Global, Regional, and Country Levels. PLoS Med 2016;13(11): e1002164.
- 9. United Nations Children's Fund (UNICEF), World Health Organization, Bank B for R and DW. Levels and trends in child malnutrition: Key findings of the 2020 Edition of the Joint Child Malnutrition Estimates. Geneva 2020.
- 10. Ethiopian Public Health Institute (EPHI) [Ethiopia] and ICF. Ethiopia Mini Demographic and Health Survey 2019: Key Indicators. Rockville, Maryland, USA: EPHI and ICF; 2019.
- 11. Central Statistical Agency (CSA) [Ethiopia] and ICF. Ethiopia Demographic and Health Survey 2000. Addis Ababa, Ethiopia and Calverton, Maryland, USA: CSA ans ORC Macro; 2001.
- 12. Prendergast AJ, Humphrey JH. The stunting syndrome in developing countries. Paediatr Int Child Health 2014; 34:250–265.
- 13. Troeger C, Blacker BF, Khalil IA, Rao PC, Cao S, Zimsen SRM, Albertson SB, Stanaway JD, Deshpande A, Abebe Z and others. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Infectious Diseases 2018;18(11):1211-1228.
- 14. Colombara DV, Khalil IA-M RPC, Troeger C, Forouzanfar MH, Riddle MS, al. e. Chronic Health Consequences of Acute Enteric Infections in the Developing World. Am J Gastroenterol 2016;3:4-11.
- 15. Salam RA, Das JK, Bhutta ZA. Current Issues and Priorities in Childhood Nutrition, Growth, and Infections. J Nutr 2015;145(1116S–1122S).
- 16. Ibrahim MK, Zambruni M, Melby CL, Melby PC. Impact of childhood malnutrition on host defense and infection. . Clinical Microbiology Reviews 2017:919–971.
- 17. Checkley W, Buckley G, Gilman RH, Assis AM, Guerrant RL, Morris SS, al. e. Multi-country analysis of the effects of diarrhoea on childhood stunting. Int J Epidemiol 2008;37:816-830.

- 18. Guerrant RL, Oriá RB, Moore SR, Oriá MOB, Lima AAAM. Malnutrition as an enteric infectious disease with long-term effects on child development. . Nutr Rev 2008:487–505.
- 19. Prüss-Üstün A, Bos R, Gore FBJ. Safer water, better health: costs, benefits and sustainability of interventions to protect and promote health. Geneva 2008.
- 20. Wirth JP, Rohner F, Petry N, Onyango AW, Matji J, Bailes A, al. e. Assessment of the WHO Stunting Framework using Ethiopia as a case study. Matern Child Nutr. 2017;13.
- 21. Fewtrell L, Kaufmann RB, Kay D, Enanoria W, Haller L, Colford JM. Water, sanitation, and hygiene interventions to reduce diarrhoea in less developed countries: a systematic review and meta-analysis. The Lancet Infectious Diseases 2005;5(1):42-52.
- 22. Clasen T, Roberts I, Rabie T, Schmidt W, Cairncross S. Interventions to improve water quality for preventing diarrhoea: A systematic review and meta-analysis. BMJ 2007;2:226–329.
- 23. Wolf J, Prüss-Ustün A, Cumming O, Bartram J, Bonjour S, Cairncross S, al. e. Systematic review: Assessing the impact of drinking water and sanitation on diarrhoeal disease in low-and middle-income settings: Systematic review and meta-regression. Trop Med Int Heal. 2014; 19:928–942.
- 24. Lin A, Arnold BF, Afreen S, Goto R, Huda TMN, Haque R, al. e. Household environmental conditions are associated with enteropathy and impaired growth in rural bangladesh. Am J Trop Med Hyg 2013; 89:130–137.
- 25. Garcia S, Sarmiento OL, Forde I, Velasco T. Socio-economic inequalities in malnutrition among children and adolescents in Colombia: the role of individual-, household- and community-level characteristics. Public Health Nutr 2013; 16(9):1703-18.
- 26. Masibo PK, Makoka D. Trends and determinants of undernutrition among young Kenyan children: Kenya Demographic and Health Survey; 1993, 1998, 2003 and 2008-2009. Public Health Nutr 2012; 15(9):1715-27.
- 27. Merchant AT, Jones C, Kiure A, Kupka R, Fitzmaurice G, Herrera MG, Fawzi WW. Water and sanitation associated with improved child growth. Eur J Clin Nutr 2003;57(12):1562-8.
- 28. Spears D, Ghosh A, Cumming O. Open Defecation and Childhood Stunting in India: An Ecological Analysis of New Data from 112 Districts. PLoS One 2013;8.
- 29. Dangour AD, Watson L, Cumming O, Boisson S, Che Y, Velleman Y, al. e. Interventions to improve water quality and supply, sanitation and hygiene practices, and their effects on the nutritional status of children. Cochrane Database Syst Rev 2013.
- 30. Luby SP, Rahman M, Arnold BF, Unicomb L, Ashraf S, Winch PJ, Stewart CP, Begum F, Hussain F, Benjamin-Chung J and others. Effects of water quality, sanitation, handwashing, and nutritional interventions on diarrhoea and child growth in rural Bangladesh: a cluster randomised controlled trial. The Lancet Global Health 2018; 6(3): e302-e315.
- 31. Null C, Stewart CP, Pickering AJ, Dentz HN, Arnold BF, Arnold CD, Benjamin-Chung J, Clasen T, Dewey KG, Fernald LCH and others. Effects of water quality, sanitation, handwashing, and nutritional interventions on diarrhoea and child growth in rural Kenya: a cluster-randomised controlled trial. The Lancet Global Health 2018; 6(3): e316-e329.
- 32. Humphrey JH, Mbuya MNN, Ntozini R, Moulton LH, Stoltzfus RJ, Tavengwa NV, al. e. Independent and combined effects of improved water, sanitation, and hygiene, and improved complementary feeding, on child stunting and anaemia in rural Zimbabwe: a clusterrandomised trial Lancet Glob Heal 2019; 7: e132–e147.
- 33. Pickering AJ, Null C, Winch PJ, Mangwadu G, Arnold BF, Prendergast AJ, Njenga SM, Rahman M, Ntozini R, Benjamin-Chung J and others. The WASH Benefits and SHINE trials: interpretation of WASH intervention effects on linear growth and diarrhoea. The Lancet Global Health 2019; 7(8): e1139-e1146.
- United Nations. Transforming our World: The 2030 Agenda for Sustainable Development.
 2015.

- 35. World Health Organization. Global Nutrition Monitoring Framework: operational guidance for tracking progress in meeting targets for 2025. Geneva: WHO; 2017.
- 36. Federal Democratic Republic of Ethiopia. Growth and Transformation Plan II (GTP II) In: Commission NP, editor. Addis Ababa 2016.
- 37. Ethiopia FDRo. Food and Nutrition Policy. 2018.
- 38. Central Statistical Agency (CSA) [Ethiopia] and ICF. Ethiopia Demographic and Health Survey 2005. Addis Ababa, Ethiopia and Calverton, Maryland, USA: CSA ans ORC Macro; 2006.
- 39. Central Statistical Agency (CSA) [Ethiopia] and ICF. Ethiopia Demographic and Health Survey 2011. Addis Ababa, Ethiopia and Calverton, Maryland, USA: CSA ans ICF; 2011.
- 40. (JMP). WUJMP. Progress on household drinking water, sanitation and hygiene 2000-2017. Special focus on inequalities. New York United Nations Children's Fund (UNICEF) and World Health Organization; 2019.
- 41. de Onis M, Garza C, Victora CG, A.W. O, Frongillo EA, Martines J. The WHO Multiceter Growth Reference Study: Planning, Study Design, and Methodology. Food Nutr. Bull. 2004; 25:S15-26
- 42. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, Ezzati M, Grantham-McGregor S, Katz J, Martorell R and others. Maternal and child undernutrition and overweight in low-income and middle-income countries. The Lancet 2013; 382(9890):427-451.
- 43. Argaw A, Hanley-Cook G, De Cock N, Kolsteren P, Huybregts L, Lachat C. Drivers of Under-Five Stunting Trend in 14 Low- and Middle-Income Countries since the Turn of the Millennium: A Multilevel Pooled Analysis of 50 Demographic and Health Surveys. Nutrients 2019; 11(10).
- 44. Headey D, Hoddinott J, Park S. Drivers of nutritional change in four South Asian countries: a dynamic observational analysis. Matern Child Nutr 2016; 12 Suppl 1:210-8.
- 45. Headey D, Hoddinott J, Park S. Accounting for nutritional changes in six success stories: A regression-decomposition approach. Global Food Security 2017; 13:12-20.
- 46. Headey D, Palloni G. Water, Sanitation, and Child Health: Evidence From Subnational Panel Data in 59 Countries. Demography 2019; 56(2):729-752.
- 47. Headey DD, Hoddinott J. Understanding the Rapid Reduction of Undernutrition in Nepal, 2001-2011. PLoS One 2015; 10(12): e0145738.
- 48. Dearden KA, Schott W, Crookston BT, Humphries DL, Penny ME, Behrman JR, Young Lives D, Consequences of Child Growth Project T. Children with access to improved sanitation but not improved water are at lower risk of stunting compared to children without access: a cohort study in Ethiopia, India, Peru, and Vietnam. BMC Public Health 2017; 17(1): 110.
- 49. Oswald WE, Stewart AE, Kramer MR, Endeshaw T, Zerihun M, Melak B, Sata E, Gessese D, Teferi T, Tadesse Z and others. Association of community sanitation usage with soiltransmitted helminth infections among school-aged children in Amhara Region, Ethiopia. Parasit Vectors 2017; 10(1): 91.
- 50. Golan J, Headey D, Hirvonen K, Hoddinott J, editors. Changes in child undernutrition rates in Ethiopia, 2000-16 Oxford: Oxford University Press 2019.
- 51. Victora CG, Barros AJD. Effect of breastfeeding on infant and child mortality due to infectious diseases in less developed countries: A pooled analysis. Lancet 2000; 355: 451–455.
- 52. Luby SP, Rahman M, Arnold BF, Unicomb L, Ashraf S, Winch PJ, Stewart CP, Begum F, Hussain F, Benjamin-Chung J and others. Effects of water quality, sanitation, handwashing, and nutritional interventions on diarrhoea and child growth in rural Bangladesh: a cluster randomised controlled trial. Lancet Glob Health 2018; 6(3): e302-e315.
- 53. Fuller JA, Westphal JA, Kenney B, Eisenberg JN. The joint effects of water and sanitation on diarrhoeal disease: a multicountry analysis of the Demographic and Health Surveys. Trop Med Int Health 2015; 20(3): 284-92.
- 54. Baye K, Hirvonen K. Accelerating progress in improving diets and nutrition in Ethiopia. 2020.

- 55. Takele K, Zewotir T, Ndanguza D. Understanding correlates of child stunting in Ethiopia using generalized linear mixed models. BMC Public Health 2019; 19(1): 626.
- 56. Kosek MN, Investigators M-EN. Causal Pathways from Enteropathogens to Environmental Enteropathy: Findings from the MAL-ED Birth Cohort Study. EBioMedicine 2017; 18: 109-117.
- 57. Jung YT, Hum RJ, Lou W, Cheng YL. Effects of neighbourhood and household sanitation conditions on diarrhea morbidity: Systematic review and meta-analysis. PLoS One 2017; 12(3): e0173808.
- 58. Fuller JA, Eisenberg JN. Herd Protection from Drinking Water, Sanitation, and Hygiene Interventions. Am J Trop Med Hyg 2016; 95(5): 1201-1210.
- 59. Boehm AB, Wang D, Ercumen A, Shea M, Harris AR, Shanks OC, al. e. Occurrence of Host-Associated Fecal Markers on Child Hands, Household Soil, and Drinking Water in Rural Bangladeshi Households. Environ Sci Technol Lett. 2016; 3: 393-398.
- Mbuya MN, Tavengwa NV, Stoltzfus RJ, Curtis V, Pelto GH, Ntozini R, Kambarami RA, Fundira D, Malaba TR, Maunze D and others. Design of an Intervention to Minimize Ingestion of Fecal Microbes by Young Children in Rural Zimbabwe. Clin Infect Dis 2015;61 Suppl 7:S703-9.
- 61. Pickering AJ, Davis J. Freshwater availability and water fetching distance affect child health in sub-Saharan Africa. Environ Sci Technol. 2012; 46:2391–2397.
- 62. Ercumen A, Pickering AJ, Kwong LH, Mertens A, Arnold BF, Benjamin-Chung J, Hubbard AE, Alam M, Sen D, Islam S and others. Do Sanitation Improvements Reduce Fecal Contamination of Water, Hands, Food, Soil, and Flies? Evidence from a Cluster-Randomized Controlled Trial in Rural Bangladesh. Environ Sci Technol 2018; 52(21):12089-12097.
- Alderman H, Headey D. The timing of growth faltering has important implications for observational analyses of the underlying determinants of nutrition outcomes. PLoS One 2018; 13(4): e0195904.

Annex: Additional Tables

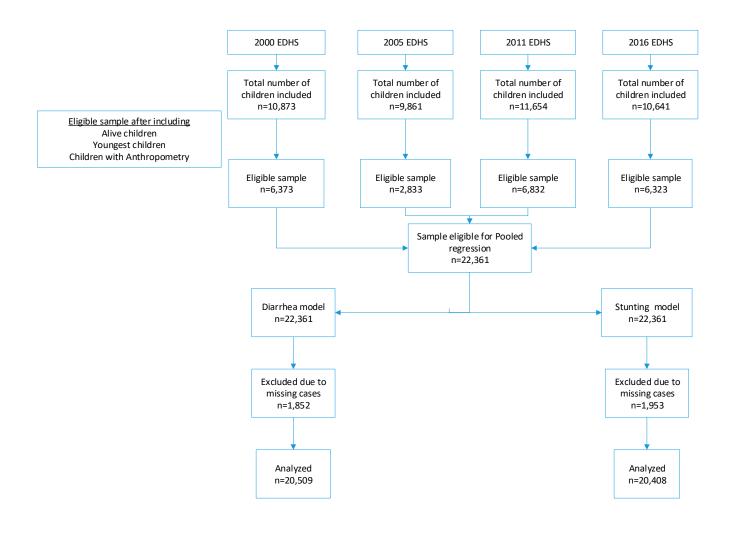
Table A1. Changes in Water Coverage in Ethiopia Between 2000 and 2016: National and RegionalLevels (%)

	2000	2005	2011	2016		2000	2005	2011	2016	
		Na	tional			В	enishan	gul Gumı	IZ	
Basic	18	46	37	50	Basic	21	43	50	62	
Limited	7	15	17	15	Limited	6	14	7	20	
Unimproved	44	13	29	24	Unimproved	32	7	21	11	
Surface water	31	26	17	11	Surface water	41	35	22	7	
	_	Ti	gray				SN	NPR		
Basic	22	47	49	58	Basic	14	45	26	40	
Limited	19	23	19	19	Limited	7	11	20	19	
Unimproved	37	15	18	13	Unimproved	39	17	33	22	
Surface water	22	13	13	9	Surface water	41	26	20	19	
		A	far				Gan	nbela		
Basic	11	21	34	43	Basic	21	49	58	75	
Limited	5	22	16	17	Limited	15	9	10	8	
Unimproved	16	9	11	19	Unimproved	26	15	20	5	
Surface water	64	47	39	22	Surface water	38	27	12	10	
		An	nhara				Harari			
Basic	10	44	42	46	Basic	26	67	66	75	
Limited	7	18	14	18	Limited	39	17	21	8	
Unimproved	52	12	26	28	Unimproved	26	9	10	14	
Surface water	30	25	17	7	Surface water	9	6	3	2	
		Or	omia				Addis	Ababa		
Basic	12	47	29	52	Basic	32	96	95	98	
Limited	12	14	18	11	Limited	67	3	5	1	
Unimproved	47	9	36	28	Unimproved	1	0	0	0	
Surface water	30	30	17	9	Surface water	0	0	0	0	
		So	mali				Dire	Dawa		
Basic	12	19	34	32	Basic	50	74	73	81	
Limited	12	14	27	14	Limited	34	19	14	10	
Unimproved	41	30	19	29	Unimproved	15	1	10	7	
Surface water	35	36	18	22	Surface water	1	5	2	2	

Table A2. Changes in Sanitation Coverage in Ethiopia Between 2000 and 2016: National andRegional Levels (%)

	2000	2005	2011	2016		2000	2005	2011	2016
		Nat	tional				Benisha	ngul Gumu	IZ
Basic	0	7	8	6	Basic	0	4	6	2
Limited	0	6	10	9	Limited	0	3	8	3
Unimproved	17	25	44	53	Unimproved	38	34	45	81
Open defecation	82	62	38	32	Open defecation	62	60	42	15
		Ti	gray				SI	NNPR	
Basic	0	3	9	8	Basic	0	12	7	8
Limited	1	10	13	13	Limited	0	3	4	5
Unimproved	16	11	33	27	Unimproved	19	50	66	69
Open defecation	83	76	45	52	Open defecation	81	36	24	19
		A	Afar			Gambela 2 3 12 8 1 4 13 10			
Basic	0	5	7	4	Basic	2	3	12	8
Limited	0	5	12	17	Limited	1	4	13	10
Unimproved	9	4	7	15	Unimproved	34	20	25	43
Open defecation	91	87	74	64	Open defecation	64	73	50	39
		Am	nhara				Н	larari	
Basic	0	5	11	2	Basic	3	16	15	17
Limited	0	4	8	6	Limited	1	25	25	27
Unimproved	5	23	39	52	Unimproved	42	19	26	34
Open defecation	94	68	43	41	Open defecation	54	41	35	22
		Ore	omia				Addi	is Ababa	
Basic	0	5	6	6	Basic	5	21	19	23
Limited	0	3	7	4	Limited	5	50	53	56
Unimproved	19	19	44	59	Unimproved	77	24	22	20
Open defecation	81	73	44	32	Open defecation	14	5	7	1
		So	mali				Dire	e Dawa	
Basic	0	4	9	12	Basic	5	20	23	24
Limited	0	7	23	17	Limited	2	34	34	38
Unimproved	26	5	9	10	Unimproved	60	13	10	18
Open defecation	74	84	60	61	Open defecation	34	34	33	20

Table A3. Changes in Hygiene Coverage in Ethiopia Between 2011 and 2016: National and RegionalLevels (%)


	2011	2016
	Nati	onal
Basic	1	8
Limited	1	52
No facility	98	40
	Tig	ray
Basic	2	9
Limited	2	42
No facility	96	49
	Af	ar
Basic	1	6
Limited	1	30
No facility	98	64
	Aml	nara
Basic	0	4
Limited	2	75
No facility	98	21
	Oro	mia
Basic	0	6
Limited	1	45
No facility	99	49
	Son	nali
Basic	0	3
Limited	0	35
No facility	99	63

	2011	2016			
	Benishan	gul Gumuz			
Basic	0	12			
Limited	1	51			
No facility	99	38			
	SN	NPR			
Basic	2	10			
Limited	1	43			
No facility	97	48			
	Gam	nbela			
Basic	3	8			
Limited	3	53			
No facility	94	39			
	На	rari			
Basic	2	7			
Limited	1	25			
No facility	98	68			
	Addis	Ababa			
Basic	8	36			
Limited	1	56			
No facility	91	8			
	Dire Dawa				
Basic	3	6			
Limited	1	42			
No facility	96	52			

Table A4. Description of Variables Used in the Analysis

Variables	Definition
Diarrhea	Percentage of living children (0-59 months) with diarrhea (three or more
	loose stools per day) at any time in the two weeks preceding the survey.
Stunting	Percentage of children (0-59 months) with height/length-for-age z score
	below -2 SD of the median based on the WHO 2006 Child Growth
	Standards.
Type of drinking water	Percentage of households whose main source of drinking water is basic,
	limited, unimproved or surface water.
Type of sanitation	Percentage of households who use toilet facilities that are basic, limited,
	unimproved or open defecation.
Household Wealth	EDHS calculated Wealth quintiles: Lowest, Second, Middle, Fourth, and
	Highest.
Maternal education	Percentage of women who attended any level of education. Categorized
	as no education, some primary education, some secondary education
	and higher education.
Fathers education	Percentage of men who attended any level of education. Categorized as
	no education, some primary education, some secondary education and
	higher education.
Maternal employment	Percentage of women who worked in the 12 months preceding the
	survey or are currently working.
Child age	Child age in months. (Dummy coded to include in the model)
Child Sex	Sex of child
Residence	Urban vs rural
Region	Region of residence
Survey round	Year of EDHS survey

Figure A1. Flow Diagram Showing Criteria Used to Include Children in Regression Analysis

					Change
Variables	2000	2005	2011	2016	(2016-2000)
Type of drinking water					
Surface water	41	29	20	13	-28
Unimproved	43	11	38	33	-10
Limited	7	13	17	14	7
Basic	9	47	25	40	31
Type of sanitation facilities					
Open defecation	85	71	42	38	-47
Unimproved toilet	15	24	46	53	38
Limited	0	3	5	4	4
Basic	0	2	7	5	5
Maternal education					
No formal education	82	77	65	59	-23
Formal education	19	23	36	40	21
Wealth					
Poorest	19	22	23	24	5
Poorer	20	19	22	23	3
Middle	25	22	24	19	-6
Richer	22	25	18	19	-3
Richest	15	12	15	15	0
Fathers education categorized					
No formal education	60	58	46	48	-12
Formal education	41	42	55	52	11
Maternal employment	60	18	47	36	-24

Table A5. Change in Exposures and Covariates Between 2000 and 2016 Among Children Aged 0-6Months

					Change
Variables	2000	2005	2011	2016	(2016-2000)
Type of drinking water					(
Surface water	40	30	19	10	-30
Unimproved	43	12	32	31	-12
Limited	6	15	20	16	10
Basic	11	44	29	44	33
Type of sanitation facilities					
Open defecation	86	64	45	34	-52
Unimproved toilet	13	29	43	55	42
Limited	0	2	6	7	7
Basic	0	5	6	5	5
Maternal education					
No formal education	83	78	67	56	-27
Formal education	17	22	33	44	27
Wealth					
Poorest	21	20	25	20	-1
Poorer	24	22	23	25	1
Middle	19	23	20	22	3
Richer	24	19	16	17	-7
Richest	13	15	16	17	4
Fathers education					
No education	63	55	48	38	-25
Primary	36	45	52	62	26
Maternal employment	59	35	47	39	-20

Table A6. Change in Exposures and Covariates Between 2000 and 2016 Among Children Aged 6-11Months

					Change
Variables	2000	2005	2011	2016	Change (2000-2016)
Type of drinking water	2000	2005	2011	2010	(2000-2010)
Surface water	35	32	19	12	-23
Unimproved	46	13	33	29	-17
Limited	7	13	17	17	10
Basic	12	42	31	42	30
Type of sanitation facilities					
Open defecation	86	66	43	37	-49
Unimproved toilet	14	27	44	54	40
Limited	0	3	5	4	4
Basic	0	4	8	5	5
Maternal education					
No formal education	80	77	68	63	-17
Formal education	21	23	32	38	17
Wealth					
Poorest	22	24	23	24	2
Poorer	21	22	22	20	-1
Middle	22	21	20	23	1
Richer	20	18	19	19	-1
Richest	17	15	16	14	-3
Fathers education					
No formal education	63	58	49	47	-16
Formal education	37	42	51	53	16
Maternal employment	63	34	55	45	-18

Table A7. Change in Exposures and Covariates Between 2000 and 2016 Among Children Aged 12-23

Months

					Change
Variables	2000	2005	2011	2016	Change (2016-2000)
Variables	2000	2005	2011	2010	(2010-2000)
Type of drinking water					
Surface water	36	28	17	13	-23
Unimproved	45	12	31	26	-19
Limited	8	14	19	16	8
Basic	12	45	33	45	-33
Type of sanitation facilities					
Open defecation	85	65	41	34	-51
Unimproved	14	28	45	54	40
Limited	1	2	5	6	5
Basic	0	5	9	6	6
Maternal education					
No formal education	84	79	67	67	-17
Formal education	17	21	33	33	16
Wealth					
Poorest	23	23	21	20	-3
Poorer	21	22	20	23	2
Middle	19	19	21	20	1
Richer	19	19	21	19	0
Richest	18	18	17	18	0
Fathers education					
No formal education	69	60	52	50	-19
Formal education	31	40	48	50	19
Maternal employment	71	41	63	53	-18

Table A8. Change in Exposures and Covariates Between 2000 and 2016 Among Children Aged 24-59Months

					Change
Variables	2000	2005	2011	2016	(2016-2000)
Type of drinking water					
Surface water	37	29	18	12	-25
Unimproved	45	12	33	29	-16
Limited	43 7	12	33 18	16	9
Basic	, 11	45	30	43	32
Type of sanitation facilities					
Open defecation	86	66	42	35	-51
Unimproved	14	27	44	54	40
Limited	0	3	5	5	5
Basic	0	4	8	5	5
Maternal education					
No formal education	82	78	67	63	-19
Formal education	17	22	23	36	19
Wealth					
Poorest	21	22	22	21	0
Poorer	21	21	21	22	1
Middle	21	21	21	21	0
Richer	20	20	19	19	-1
Richest	16	16	16	16	0
Fathers education					
No formal education	65	58	50	47	-18
Formal education	35	41	50	53	18
Maternal employment	65	35	56	46	-19

Table A9. Change in Exposures and Covariates Between 2000 and 2016 Among Children Aged 0-59Months